
A response to the Brown et al critique.

In their “critical reanalysis” of the Fredrickson et al.1 report noting associations 
between eudaimonic well-being and reduced expression of adversity-sensitive 
genes, Brown et al.2 argue that the results are “no more than a product of 
chance” and judge “the chances of a successful reproduction… remote.”

Their conclusion is invalid for 2 primary reasons:

1) The Fredrickson et al. results have already been replicated.

2) The “bitmapping” analysis Brown et al. use to estimate false positive error 
rates is invalid.  

1. Fredrickson et al. (2013) A functional genomic perspective on human well-being.  Proc Natl Acad Sci USA, 110(33):13684–13689
2. Brown et al. (2014) A critical reanalysis of the relationship between genomics and well-being.  Proc Natl Acad Sci USA, in press. 
www.pnas.org/cgi/doi/10.1073/pnas.1407057111



Eudaimonic Hedonic

Study 1 -.28 +.28
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Hedonic association with RNA

1. Replication of the initial result
N = 122 healthy adults
Direct replication of previous measures and analyses, as well as new analyses by 
mixed effect linear modeling.

Eudaimonic Hedonic

Study 1 -.28 +.28

Study 2 -.21 +.25

Integrating over bivariate normal PDF
P(1.76 < X < 2.18 ∩ -2.29 < Y< -1.40)

P(close replication|Brown-null) = 0.012

Sampling variability implied by Brown et al. analysis 
purporting 31-44% false + error rates

Initial results replicate 
much more closely than 
would occur if Brown’s F+ 
error claims were accurate.

Actual replication 
results



2. “Bitmapping” analysis is invalid  

Brown et al. conduct systematic combinatorial partitioning of observed 
psychometric variables and use the results to estimate F+ error rates.

The problem: bitmapping/systematic re-partitioning of a fixed data set is 
NOT random, does not involve any resampling of observations (subjects), 
and therefore cannot provide any valid estimate of F+ error rates.   

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10 Item 11 Item 12 Item 13 Item 14

Subject 1 4 4 4 4 3 3 3 3 4 4 5 5 5 4

Subject 2 5 5 5 5 5 3 3 3 5 3 5 5 5 5

Subject 3 4 4 4 4 5 0 4 0 5 4 5 1 4 4

Subject 4 5 5 5 5 5 3 5 5 5 4 5 5 4 4

Subject 5 4 4 4 4 3 1 3 1 3 4 4 4 4 4

Subject 6 3 4 4 4 3 3 4 4 4 4 3 4 4 4

Subject 7 3 4 4 4 5 1 5 5 3 2 5 5 5 2

Subject 8 4 5 4 5 4 2 3 0 4 4 4 4 4 4

Subject 9 5 5 4 4 4 3 3 3 3 3 3 5 4 4

Subject 10 2 2 1 3 2 3 2 1 2 1 1 2 1 1

Subject 11 3 4 3 4 4 1 3 1 3 4 3 3 3 5

Subject 12 3 4 1 4 4 0 4 1 1 2 3 0 4 1

Subject 13 5 5 4 5 5 3 4 2 4 5 5 5 5 5

Subject 14 0 2 1 1 0 0 3 3 0 0 0 0 3 0

Subject 15 5 5 5 5 5 3 5 4 5 3 4 5 5 5



The evidence: striking discontinuity between…

1) true sampling distributions for associations between 
well-being scores and RNA expression

vs.

2) distributions emerging from Brown et al.’s “simulation” 
of Fredrickson et al. data analyses 



Figure 7. Scatter plot of 8,191 possible combinations of the 14 
items of the MHC-SF into “factors” using psychometric data

Brown et al. assert the bizarre distribution and 
high statistical significance rates stem from some 
bias inherent in the association estimator 
Fredrickson et al. used to quantify pooled 
association of 53 indicator mRNAs with well-being.

“Bitmap” estimate

Parameter estimate
RNA association with well-being scores
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“Bitmap” estimate

1. Overall: very very thin 
/ correlated

2. Middle is “belted” 
not plump

3.  Highly over-dispersed

Parameter estimate
RNA association with well-being scores

True null sampling distribution

(Permutation)
Figure 7. Scatter plot of 8,191 possible combinations of the 14 
items of the MHC-SF into “factors” using psychometric data

Bitmapping produces inaccurate estimates of parameter sampling distributions.



Does the problem stem from the data?

One way to tell: feed the bitmap analysis randomly generated data 
and examine the resulting null distribution for an established 
benchmark estimator (e.g., 2-sample t test)

1.    Randomly generate data matrix 
Uniformly distributed integers 0-5, as in Brown’s SI Fig 9, centered to mean=0

2.    Generate “pseudo factor” scores from bitmap partitions

3.    Compute 2-sample t test on pseudo factor scores
Should be completely null, with mean and difference distributions centered on 0

Note: this analysis does not involve
• well-being data
• RNA data
• RNA/well-being association estimator
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Bitmap distribution

Bitmap procedure generates erroneous sampling distributions for group means.

Mean dif = .000    r = .00 Mean dif = .012    r = -.93
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Bitmap procedure generates erroneous sampling distributions for effect sizes.
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1. Thin / correlated
2. Belted
3. Whiskered
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Mean dif = -.012Mean dif = .000
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Bitmap procedure generates erroneous sampling distributions for test statistics.
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Figure 8. Scatter plot of 8,191 MHC-SF “factors”, with psychometric data replaced by 
normally-distributed random numbers,

Bias:  why are associations with random numbers
not showing an average value of 0,0?

How can they NEVER show 0,0?



Figure 9. Scatter plot of 8,191 MHC-SF “factors” with psychometric data replaced by
uniformly-distributed random numbers

Observation:
Bitmap analysis somehow evokes
complex systematic structure out 
of random input data.



Figure 8. Scatter plot of 8,191 MHC-SF “factors”, with psychometric 
data replaced by normally-distributed random numbers

Bitmap distribution

Why are random numbers showing
asymmetric association?
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OK, the parameter estimates are wrong.
But maybe the p-values are OK?

First, if the parameter estimates are invalid, then the p-values that 
depend on them are invalid as well. 

But just to be sure…. 

1.    Randomly generate data matrix 
Uniformly distributed integers 0-5, as in Brown’s SI Fig 9

2.    Generate “pseudo factor” scores from bitmap partitions

3.    Compute 2-sample t test on pseudo factor scores
p-value distribution should be completely uniform over the range 0-1

Note: this analysis does not involve
• well-being data
• RNA data
• RNA/well-being association estimator



True 2-sample t-test
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Take-home points:

1. Associations between eudiamonic well-being and gene expression 
have been replicated.

2. The “simulation” results of Brown et al. are invalid and irrelevant.

• Irrelevant: The bitmapping recombination analysis is not simulating the analysis 
Fredrickson et al performed.*

• Invalid:  The bitmapping re-partitioning algorithm does not provide a valid 
assessment of true sampling variability or False + error rates.**

• Misinterpreted:  The aberrant sampling distributions Brown et al. attribute to the 
RNA association estimator are actually artifacts of their own algorithm.***

* 1. MHC-SF scales were scored according to the developer’s established allocation of eudiamonic and hedonic items.  
Scoring was not based on results of any re-combination of MHC-SF items or any aspect of the observed data.
** 2. Brown et al. offer no citation or mathematical justification for the use of systematic variable repartitioning across a
fixed data set to estimate random sampling distributions or F+ error rates.  On investigation, the bitmapping method is 
quickly found to be invalid.
*** 3. Systematic re-partitioning of variables observed on a fixed set of data will produce distorted distributions for any 
data set analyzed by any statistical procedure (including benchmarks such as the t test, and totally random data).   



For statisticians:  what is “bitmapping?”

Brown et al. take a fixed data set, systematically re-partition it across 
variables (not subjects), and compute parameter estimates and p-values 
based on data generated by each partition.  There is no random 
sampling of observations at all.

The resulting “sampling” (actually re-combination) distributions yield…
• Biased parameter estimates
• Biased test statistics
• Invalid statistical distributions and p-values

Why?  The recombination procedure is fully deterministic, conditional upon a fixed 
observed data set (either systematic/observed or randomly generated). 
Resampling or randomly partitioning across rows/cases is what they should have done.



Brown et al. Fig 7

Figure 7. Scatter plot of 8,191 possible combinations of the 14 
items of the MHC-SF into “factors” using psychometric data

We understand what they are doing.  Regardless of whether it makes sense.
Minor numerical differences are due to rounding error

Computing a distribution across alternative variable partitions 
(conditional on fixed observations) seems very strange. 

Is that what they really did?

When we did it.
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Why is bitmapping problematic for statistics?

Failure to randomly sample has 2 significant implications:

1) It generally induces non-null statistical distributions (expected value ≠ 0), 
even from randomly generated input data* 

2) It efficiently capitalizes on chance variations in the single fixed data set 
analyzed, yielding results that are generally unreplicable

* This implies that bitmap distributions cannot generally provide any information about F+ rates 
(because a true non-zero association is generally present in the bitmap “population”)



Brown Figure 9. Scatter plot of 8,191 MHC-SF 
“factors” with psychometric data replaced by 

uniformly-distributed random numbers

Bitmap-induced bias in statistical distributions
Bitmap-induced bias creates “non-central” distributions that show a TRUE systematic 

association with outcomes (even when the input data are randomly generated!*).

Implication:
Bitmap distributions cannot provide any valid 
information about False positive error rates.

Because the distribution shows a true association 
(expected value ≠ 0,0), statistical significance rates 
reflect only:

• True positives       (significant | true effect)
• False negatives          (non-sig | true effect)

p-values provide no information about False positive 
error rates because F + occurs only in the context of 
a true null distribution (expected value = 0,0).

Many/all p-values in a bitmap distribution should
reach statistical significance because the null 
hypothesis is in fact false (due to bitmap-induced 
distributional bias).  Brown’s claim of “inflated 
significance rates” stems from his own bitmap data 
manipulation (not from association estimators). 

* This stems from the bitmap’s systematic repartitioning of a single data set, instead of random resampling of cases.
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Randomly generated integers [0,5] centered to true mean = 0 
(x - 2.5), and bitmap partitioned into 2 “pseudo-factors”



Study 1:  mean = .091 ± .001, p < 10-100

Study 2:  mean = .001 ± .003, p = .6971 

Test-retest reliability of all 8,191 bitmap 
associations: r = .056
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Study 1: bitmap pseudo-factor association with RNA

Results from bitmapping analyses are unreliable because bitmapping is statistically invalid.

Demonstration:
Test in Study 2 the replicability of Study 1’s 
top 100 bitmap associations with RNA

Replicable 
results

Why is bitmapping statistically invalid?
Statistics is fundamentally about identifying non-random / replicable associations.

Because bitmapping does not involve any quantification of random sampling variability,
it produces fundamentally unreliable / unreplicable findings.

Bitmapping is a system for efficiently capitalizing on chance.

Actual 
results

Strongest bitmap association in Study 1
Study 1:  z = 16.80         should be highly replicable
Study 2:  z =   0.16         no association in Study 2



Bitmapping capitalizes on chance so extremely that is fails to identify 
reliable findings even when they are present.

Why is bitmapping statistically invalid?
An alternative demonstration based on replicability.

Replicability of RNA association with 
established MHC-SF scores1
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Replicability of Study 1 max bitmap 
association with RNA 

Brown et al.’s “best” pseudo factor pair



For non-statisticians: valid estimation of F+ error rates
False positive error rates for statistical tests are quantified by random 
sampling simulations, including:

1) Monte Carlo analyses, in which random data values are synthesized and fed to the 
statistical test, and nominally “significant” results are enumerated*

2) Randomization tests, in which observed (real) data values are randomly permuted 
across subjects and fed to the statistical test, and nominally “significant” results are 
enumerated

3) Bootstrapping residuals, in which residuals from observed data are randomly 
resampled and fed to the statistical test, and nominally “significant” results are 
enumerated. 
(Bootstrapping residuals, rather than observed data values, ensures there is no true 
association – showing performance under the null hypothesis.)

Plots on the following page show results from such analyses

* Supporting Information associated with the original Fredrickson et al. report provided extensive Monte Carlo simulations demonstrating accurate false 
positive error control for the RNA association estimator.  As should be the case – it is simply the sum of random variables, an elementary statistical result.
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Permutation Bootstrap residuals
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True null hypothesis sampling distributions for the RNA association estimates
(metric = fold-difference parameters graphed by Brown et al.)
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Mean = .02, .02    r = -.97

Bitmap distribution

Aberrant distribution is created by the bitmap procedure itself.
The aberrant distribution is not a product of the RNA pooled association estimate 

(which should be obvious, because that is simply an elementary sum of 53 random variables - regression coefficients)

Mean = .00, .00    r = .00

1. Thin / correlated
2. Belted
3. Biased / offset
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Bitmap procedure generates erroneous sampling distributions for group means, 
estimated differences, test statistics, and p-values.

Mean dif = .000    r = .00 Mean dif = .012    r = -.93
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How does such structure arise from “randomness?”

What Brown et al. are actually doing when they claim to test accuracy of 
the “Fredrickson et al.” RNA association analysis:

Data
(observed or random)

Bitmap 
variable 

re-combinations
8,191 partitions of 14 items

Pseudo-factor 
scores

8,191 pairs of means 
over partitioned items

RNA = f(factor scores)
Predictors = 2 pseudo factor scores

reanalyzed 8,191 times

Data
(observed or random)

1 established 
MHC-SF scoring

2 a priori scale scores
Based on multiple previous CFAs, Ns ~1000s

No influence of current data on scoring structure.

RNA = f(scale scores)
Predictors = 2 a priori scale scores

What Fredrickson et al. really did:

On gloss, bitmapping sounds random because it involves permutation/recombination.
Bitmapping is not as random as it sounds, though, because it involves systematic recombination of 
variables, rather than the more familiar (and legitimate) random recombination of cases.  
Cases are not varied or resampled at all in bitmapping.
As such, bitmapping provides no information about the sampling variability of results, and no 
information about whether statistically significant results are F+ or T+.



Brown et al. draw all of their conclusions regarding 
False positive error rates from the invalid bitmap 
analysis.  As a consequence:

1. None of the parameter distributions in their SI 
Figs 7-11 is correct.

2. None of the F+ error rates quoted in the text 
or the F+ distributions shown in the figures 
(black vs. grey dots in SI Figs 7-11) is correct. 

3. The Brown et al. analysis offers no valid 
information about likelihood of replication.  

Moreover, the result has already been replicated.  
So, not only is their conclusion analytically wrong, 
but it is also empirically wrong.  The point is moot. 

Implications for interpreting Brown et al. results:


